Chapitre 12 : Limites et continuité

Calculs de limites

Exercice 1: Déterminer les limites suivantes

1.
$$l: x \mapsto \frac{x^5 - x}{x^2 - 1}$$
 en $+\infty$

2.
$$f: x \mapsto \sqrt{1+x} - \sqrt{x-1}$$
 en $+\infty$

3.
$$g: x \mapsto \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
 en 0

4.
$$h: x \mapsto x^x \text{ en } 0^+$$

5.
$$p: x \mapsto \frac{\sin(2x)}{5x}$$
 en 0

6.
$$k: x \mapsto \frac{x\sin(x)}{x^2+1}$$
 en $+\infty$

7.
$$m: x \mapsto \cos(5x)e^{-3x}$$
 en $+\infty$

8.
$$r: x \mapsto e^{x-\sin(x)}$$
 en $+\infty$

Exercice 2: Soit f une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , périodique et admettant une limite en $+\infty$. Montrer que la fonction f est constante sur \mathbb{R} .

Prolongement par continuité

Exercice 3:

- 1. Soit $f: x \mapsto x|x|$ définie sur \mathbb{R} . Déterminer les limites de f en $+\infty$ et en $-\infty$.
- 2. Soit $f: x \mapsto x \left| \frac{1}{x} \right|$ définie sur \mathbb{R}_+^* . Déterminer les limites de f en 0 et en $+\infty$. Peut-on la prolonger par continuité en 0 ? [**] Tracer la représentation graphique de f sur [0;1].

Exercice 4: Limites et fonction sinus

- 1. Montrer que la fonction sinus n'admet pas de limite en $+\infty$.
- 2. Soit $f: x \mapsto \sin\left(\frac{1}{x}\right)$ définie sur \mathbb{R}^* . Montrer que la fonction f n'admet pas de limite en 0.
- 3. Soit $f: x \mapsto x \sin\left(\frac{1}{x}\right)$ définie sur \mathbb{R}^* . Montrer que la fonction f peut être prolongée par continuité en 0.

Continuité

Exercice 5: Soit q définie sur [0,1] par

$$g: x \mapsto \begin{cases} \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor} \text{ pour } x > 0\\ 0 \text{ pour } x = 0 \end{cases}$$

- 1. Étudier la continuité de q en 0.
- 2. Tracer la représentation graphique de q sur [0; 1].

Exercice 6: Étudier la continuité des fonctions suivantes

1.
$$f: x \mapsto \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor$$
 3. $h: x \mapsto \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor^x}$

3.
$$h: x \mapsto \frac{x^{\lfloor x \rfloor}}{|x|^a}$$

2.
$$g: x \mapsto |x| + (x - |x|)^2$$

Exercice 7: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que

$$\forall x \in \mathbb{R}, \ f(2x) = f(x).$$

- 1. Montrer que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f(x) = f\left(\frac{x}{2^n}\right)$.
- 2. En déduire que f est constante sur \mathbb{R} .

Exercice 8: Soit $(a, b) \in \mathbb{R}^2$ tel que $a \leq b$.

1. Soit f une fonction définie sur [a, b] à valeurs dans [a, b] et continue sur [a, b].

Montrer que : $\exists c \in [a, b]$ tel que f(c) = c.

2. Soit f une fonction définie, continue et décroissante sur \mathbb{R} . Montrer que : $\exists ! c \in \mathbb{R}$ tel que f(c) = c.

Exercice 9: Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\lim_{x \to -\infty} f(x) = 1 \text{ et } \lim_{x \to +\infty} f(x) = -1$$

Montrer que f s'annule sur \mathbb{R} .

Exercice 10: Soit f une fonction continue et périodique sur \mathbb{R} . Montrer que f est bornée sur \mathbb{R} .

Exercice 11: Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\lim_{x \to -\infty} f(x) = +\infty$$
 et $\lim_{x \to +\infty} f(x) = +\infty$.

Montrer que f admet un minimum global sur \mathbb{R} .

Exercice 12: Soient f et g deux fonctions continues sur \mathbb{R} .

1. Montrer que

$$\forall x \in \mathbb{R}, \ \sup(f(x), g(x)) = \frac{1}{2} \left(f(x) + g(x) + |f(x) - g(x)| \right)$$

2. Montrer que la fonction $\sup(f,g)$ est continue sur \mathbb{R} .

Exercice 13:

1. Soit f une fonction définie sur un intervalle I et soit $k \in \mathbb{R}_+^*$. On suppose que f est k-lipschitzienne sur I i.e.

$$\forall (x,y) \in I^2, |f(x) - f(y)| \le k|x - y|$$

Montrer que f est continue sur I.

- 2. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction k-lipschitzienne avec $k \in]0,1[$.
 - (a) Montrer que $\exists ! c \in [0; +\infty[, f(c) = c]$.
 - (b) Montrer que la suite (u_n) , définie par $u_0 \in [0; +\infty[$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, converge vers c.

<u>Exercice 14:</u> Déterminer l'ensemble des fonctions continues $f:\mathbb{R}\to\mathbb{R}$ telles que :

- 1. $\forall x \in \mathbb{R}, \ f(x)^2 = f(x)$
- 2. $\forall x \in \mathbb{R}, \ f(2x) + f(x) = 0$

Exercice 15: Soit $f: x \mapsto \frac{1}{x} + \frac{1}{x-1}$ définie sur]0,1[.

- 1. Montrer que f est bijective sur]0,1[à valeurs dans un intervalle à préciser.
- 2. Déterminer $\lim_{n\to+\infty} f^{-1}\left(\frac{1}{2^n}\right)$.